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This paper takes a fresh look at the geometric conservation law (GCL) from the perspective
of the finite element method (FEM) for incompressible flows. The GCL arises naturally in
the context of Arbitrary Lagrangian Eulerian (ALE) formulations for solving problems on
deforming domains. GCL compliance is traditionally interpreted as a consistency criterion
for applying an unsteady flow solution algorithm to simulate exactly a uniform flow on a
deforming domain. We introduce an additional requirement: the time integrator must
maintain its fixed mesh accuracy when applied to deforming meshes. A review of the lit-
erature shows that while many authors use an ALE FEM, few of them discuss the GCL
issues. We show how a fixed mesh unsteady FEM using high order time integrator (up
to fifth order in time) can be transposed to solve problems on deforming meshes and pre-
serve its fixed mesh high order temporal accuracy. An appropriate construction of the
divergence of the mesh velocity guarantees GCL compliance while a separate construction
of the mesh velocity itself allows the time-integrator to deliver its fixed mesh high order
temporal accuracy on deforming domains. Analytical error analysis of problems with
closed form solutions provides insight on the behavior of the time integrators. It also
explains why high order temporal accuracy is achieved with a conservative formulation
of the incompressible Navier–Stokes equations, while only first order time accuracy is
observed with the non-conservative formulation and all time-integrators investigated
here. We present thorough time-step and grid refinement studies for simple problems with
closed form solutions and for a manufactured solution with a non-trivial flow on a deform-
ing mesh. In all cases studied, the proposed reconstructions of the mesh velocity and its
divergence for the conservative formulation lead to optimal time accuracy on deforming
grids.

� 2008 Elsevier Inc. All rights reserved.
1. Introduction

Arbitrary Lagrangian Eulerian (ALE) formulations are very popular for solving differential equations on deforming do-
mains. In this approach the partial differential equations (PDE’s), here the unsteady Navier–Stokes equations, are expressed
with respect to a reference fixed configuration. A so-called ALE mapping associates at each time t a point in the current com-
putational domain XðtÞ to a point in the reference domain Xð0Þ. This ensures that the solution evolves along trajectories that
are contained in the computational domain at all times. When discussing ALE formulations, several issues are raised by dif-
ferent authors. What is the regularity of the mapping required to ensure that the problem is well posed? How is the mapping
defined, represented and discretized? What is the effect of the mesh velocity on the accuracy on the time integrator? What is
. All rights reserved.
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the level of stability of the resulting algorithm? The bulk of these issues is usually discussed in the context of the GCL or
geometric conservation law [1].

This paper takes a fresh look at the GCL from the somewhat restricted perspective of finite element methods for incom-
pressible flows, using the usual definitions of the GCL and its discrete counterpart. However these definitions do not address
the issues raised in the previous paragraph about the interactions between the mesh motion, its discretisation and that of
space and time discretisation schemes, especially its time accuracy. As we will show, a poor choice of a single component
of the ALE formulation results in a lower accuracy on deforming domains than that observed on fixed domains.

1.1. Literature review

The GCL has been the subject of many investigations and has generated several controversial opinions. It is generally ac-
cepted that if an ALE formulation preserves a uniform flow on a deforming grid, then this constitutes either a definition of the
GCL or a GCL compliance test for the numerical scheme [2–8]. For instance Shyy et al. [9] demonstrated that without explic-
itly enforcing the GCL, O(1) errors could be induced in the computations due solely to grid movement effects. Thus, it appears
that GCL compliance may have a significant effect on the performance of an ALE scheme.

The space–time finite element method (STFEM), an alternative to ALE Methods, has received much attention because in
the case of the STFEM the GCL issue disappears completely. However this comes at the cost of doubling the number of un-
knowns at each time-step for a second order time-stepping scheme. Thus there remains much interest in ALE schemes be-
cause of their lower computational expense. STFEM have been developed by many authors such as N’dri et al. [10] for
Computational Fluid Dynamics, Li et al. [11] for Structural Dynamics, and Hansbo et al. [12], Stein et al. [13] for Fluid–Struc-
ture Interaction problems.

GCL compliance, or how the ALE mesh velocity is computed, often appears as a necessary condition for consistency of an
ALE numerical scheme. Lacroix et al. [14] showed that many simple techniques work well for unidirectional mesh motions.
However, many schemes reveal their limitations as soon as arbitrary 2D mesh motions are considered. Lesoinne and Farhat
[4] state that compliance can be tested by verifying satisfaction of the discrete version of the GCL. That is checking that a
uniform flow is not polluted by approximation errors caused by mesh motion.

Table 1 shows a compilation of many contributions and approaches to the GCL. All but one are concerned with time inte-
grators of order 1 or 2. Mavriplis [26] discusses the construction of GCL compliant Finite Volume formulations for time-step-
ping schemes of order higher than 2. Thus, there is a definite need to investigate how to develop GCL compliant ALE FEM
with high order temporal accuracy. The fifth column in Table 1 indicates the order of convergence in space and time of
the schemes used in each paper. The next to last column of the table indicates whether or not systematic time step refine-
ment studies were performed by the authors. Several authors show results with such complex geometries or flow physics
that it most likely masks the effects of GCL compliance. In such situations, we consider that convergence studies are incon-
clusive even when they have been performed. The last column indicates if a theoretical stability analysis has been performed.

Previous studies used various names and acronyms to refer to different aspects of the GCL. The concept of GCL was first
introduced in 1961 by Trulio et al. [1] and later generalized by Thomas et al. [15] for the finite volume method (FVM).
Table 1
Methods (FE: finite element, FD: finite difference, FV: finite volume), formulation of PDE’s (C: conservative, NC: non-conservative), discretisation order,
occurrence of grid convergence and stability study and Incompressible flows study.

Author Year Method Form. Order Grid Conv. Stability study Inc.

Trulio [1] 1961 FD C – – – –
Thomas [15] 1979 FD C Dx2;Dt – – –
Demirdzic [16] 1988 FV C – Yes – –
Lacroix [14] 1992 FD C Dx2;Dt – – Yes
Zhang [8] 1993 FV/FD C Dx2;Dt – – –
Lesoinne [4] 1996 FV/FE C Dt2 – – –
Formaggia [17] 1999 FE C/NC Dt2 – Yes –
Koobus [7] 1999 FV/FE C Dx2;Dt2 – – –
Guillard [5] 2000 FV C Dx2;Dt2 – – –
Nkonga [18] 2000 FE C Dt3 – – –
Farhat [19] 2001 FV C Dx2;Dt2 – Yes –
Cao [20] 2002 FV C Dt2 – – –
Kamakoti [6] 2003 FV C Dt;Dt2 Yes – –
Gordnier [21] 2003 FD C Dt – – –
Lian [22] 2003 FV C – – – Yes
Boffi [23] 2004 FE C Dx2;Dt2 Yes Yes –
Formaggia [3] 2004 FE C/NC Dt2 Yes Yes –
Jan [24] 2004 FE C – – – Yes
Geuzaine [25] 2003 FV C Dt2 Yes – –
Mavriplis [26] 2005 FV C Dx2;Dt4 Yes – –
Engel [27] 2005 FV C – Yes –
Förster [28] 2006 FE C Dx2;Dt2 Yes – Yes
Present 2008 FE C/NC Dx3;Dt5 Yes – Yes
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Different approaches have been considered. As observed by Demirdžic et al. [16], the true significance of the Space Conser-
vation Law (SCL) or GCL, was probably not recognized initially because most studies were performed with one-dimensional
mesh motions for which it is much easier to satisfy the GCL, than on grids subjected to arbitrary motion. This is why many
highly successful 1D schemes failed when generalised to two or three dimensions. Förster et al. [28] showed that a simple
formula can be used to compute the mesh velocity for 1D grid motions. However, since they do not show results for more
general 2D grid motions, it cannot be inferred that their formulation satisfies the GCL in 2D or 3D.

Much of initial work on the GCL was performed using finite volume methods. While the FVM and FEM often lead to iden-
tical schemes in 1D, multi-dimensional discretisations of fluid flow equations result in different computational stencils.
Hence, one can legitimately expect that an effective finite volume ALE technique might not apply directly to finite element
discretisations without some adjustments.

Zhang et al. [8] discussed previous studies and their limitations with regards to general purpose application. They note
that a numerical scheme is said to satisfy the Volume Conservation Law (VCL) if it guarantees satisfaction of both the con-
tinuity equation and the SCL for a uniform flow. They stress that satisfying these two laws is required to satisfy the GCL.

1.2. DGCL and temporal accuracy

The discrete geometric conservation law (DGCL) of Farhat et al. [19] provides significant insight on the accuracy of the
time-stepping scheme. For a pth order time-accurate scheme ðp P 1Þ on a fixed mesh, satisfying the discrete geometric con-
servation law to pth order accuracy is a sufficient condition for this scheme to be at least first order time-accurate on a mov-
ing mesh [5], meaning that in practice the time accuracy of a DGCL compliant scheme might be reduced from pth order on a
fixed mesh to as low as first order on a deforming mesh. Also, the higher the order of a time-stepping scheme on a fixed grid,
the more important it becomes for this scheme to satisfy the DGCL for successful applications to flows on a moving grid.
Furthermore, unless restricted by numerical stability conditions, a numerical method satisfying the DGCL will generally al-
low a much larger computational time-step than its counterpart violating the DGCL.

Mavriplis et al. [26] as well as Geuzaine et al. [25] showed that it is possible to construct an ALE formulation which pre-
serves the fixed mesh temporal accuracy of the time-stepping scheme on a deforming mesh without satisfying the DGCL.
Furthermore, Mavriplis also states that the DGCL is unrelated to the time-accuracy! Geuzaine et al. [25], have proven that
the DGCL is neither a necessary nor a sufficient condition to preserve time-accuracy.

1.3. DGCL and stability

The effect of GCL on stability of ALE Methods is controversial. This question is still open for debate as shown by the oppos-
ing conclusions of Farhat et al. [19] and Boffi et al. [23]. In the paper by Farhat the DGCL appears as a necessary and sufficient
condition for stability of schemes with up to 2nd order temporal accuracy, while Boffi et al. [23] and Formaggia and Nobile
[3] showed that it is neither necessary nor sufficient for stability except for the 1st order backward Euler Implicit scheme.
They conclude that GCL compliance is likely to improve accuracy of the numerical scheme and enhance its stability in some
cases.

Mavriplis compared non-DGCL-compliant to DGCL-compliant schemes of the same temporal accuracy [26]. The lat-
ter ones appear to be free from oscillations that are unavoidable in the former ones. He attributed these oscillations to
the lack of conservation induced by violation of the GCL. In [19], Farhat et al. showed too that schemes violating the DGCL
while generating accurate solutions, were polluted by bounded oscillations whereas those satisfying the DGCL did not
exhibit spurious oscillations. Numerical consistency requires satisfaction of the geometric conservation law (GCL) to avoid
spurious solutions.

Kamakoti et al. [6] present an unusual approach. The flow field is advanced in time to tnþ1 using the implicit Euler scheme
while a GCL compliant mesh velocity field is obtained at tnþ1 with variants of first or second order implicit time-integrators.
They found that the best results are obtained when the first order implicit Euler scheme is applied to both the flow and mesh
velocity.

1.4. Approaches to the GCL

There are several ways to achieve GCL compliance. Formaggia and Nobile [3] take the following approach to the GCL. Gi-
ven a spatial discretisation of a convection–diffusion equation and an ALE mapping (mesh velocity), they seek variants of a
given time integrator such that the GCL is satisfied. Their approach involves multi-point time quadrature of the right-hand
side of the systems of ODE’s in time. For instance, for solving dy=dt ¼ gðt;uðtÞÞ they replace the standard implicit backward
Euler
ynþ1 � y ¼ Dtgðtnþ1;unþ1ðtÞÞ ð1Þ
by the following modified scheme
ynþ1 � yn ¼ Dt
Xm

l¼0

wlgðtl; unþ1ðtÞÞ ð2Þ
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This involves mþ 1 evaluations of the PDE residuals, an expensive proposal for large finite element problems. Such an ap-
proach has also been chosen in [4,25], for example. Interestingly, Lesoinne and Farhat [4] adopt a similar philosophy. Their
2D GCL compliant FV scheme uses the trapezoidal rule for evaluating the mesh velocity. In 3D, they use the 3D analog of their
2D Finite Volume discretisation of space but replace the Crank–Nicholson time integrator by a n-step multipoint time inte-
grator similar to that expressed by formula (2).

1.5. The present work

We take a different approach: given a spatial discretisation and a time-integrator, we seek a method for evaluating the
divergence of the mesh velocity to satisfy the GCL, and a second method to compute the mesh velocity so as to ensure that
high temporal accuracy observed on fixed meshes is maintained on moving meshes. In a sense we separate the computation
of the mesh velocity and that of its divergence as if they arose from two distinct mesh velocity fields. We believe that this
approach offers several advantages. Code development and implementation are simplified as the time integrator routine re-
mains unchanged. In fact, the same routine is used in 2D and 3D and for fixed and deforming meshes. Modifications are con-
fined to a handful of routines for evaluation of the weak form residuals, mesh velocity divergence, and mesh velocity itself.
Thus development time is reduced. Code maintenance is simplified since there is no need to maintain separate integrators
for fixed mesh and deforming mesh simulations nor is there requirement to use different integrators in 2D/3D simulations.
Finally, because identical integrators are used in all cases, analysis of results, and diagnosis of odd simulation results are also
simplified.

Furthermore, incompressible flows present an additional difficulty. Because pressure acts as the Lagrange multiplier
enforcing the incompressibility constraint (continuity equation), achieving higher order time accuracy for pressure is
more difficult in incompressible flows than in compressible flows. In fact, for time-stepping schemes of order greater
than 2 for the velocity, incompressibility is achieved at the cost of a reduction of the temporal accuracy in pressure.
In this study, we consider the Crank–Nicholson (2nd order for velocity and pressure) and a family of fully implicit Run-
ge–Kutta schemes that are 3rd and 5th order time accurate for velocity and 2nd and 3rd order time accurate for
pressure.

To shed some light we propose testing the GCL at three levels of compliance:

(1) GCL level 1: an Arbitrary Lagrangian Eulerian (ALE) formulation satisfying the GCL must produce the exact solution to
the no-flow test on arbitrary deforming grids (see [16]).

(2) GCL level 2: an ALE formulation satisfying the GCL must produce the exact solution of a uniform flow on moving grids,
this is the so-called Discrete GCL (DGCL) by Farhat et al. [19].

(3) GCL level 3: for a properly designed ALE formulation satisfying the GCL, the time-stepping scheme must exhibit the
same convergence rate on deforming and fixed grids [19,26].

The first two levels are commonly found in the literature. The third one is a powerful test of time integrators, especially
high order ones.

We show through carefully chosen examples that satisfying the constant solution test on a moving grid, i.e. the usual
standard GCL compliance test, does not guarantee that the high order temporal accuracy observed on fixed meshes will also
occur on moving meshes.

This paper is organized as follows. Section 2 describes the governing equations for laminar flows of incompressible fluids
on deforming domains. This is followed by a brief overview of the finite element method used to solve the equations. Section
4 discusses the conservative and non-conservative weak forms of the ALE problems The next section provides a general
framework useful to compare time-integrators. Section 6 is a detailed development of methods to evaluate the mesh velocity
divergence so as to satisfy the GCL. The separate construction of the mesh velocity itself to achieve high order temporal accu-
racy is the subject of Section 7. Section 8 presents results from careful numerical tests and analytical error analysis. Sections
9 and 10 present a discussion of the results and conclusions.
2. Governing equations

The flow of an incompressible fluid is described by the continuity and momentum equations [29] written in convective
(non-conservative) form
$ � u ¼ 0 ð3Þ
qu;t þ qðu � $Þu ¼ $ � rþ f ð4Þ
In an arbitrary time-dependent coordinate system, the momentum equations (4) are written, in non-conservative form
as
qu;t þ q½ðu� vÞ � $�u ¼ $ � rþ f ð5Þ
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where v is the velocity of the moving reference frame, q the fluid density, u the fluid velocity, r the total fluid stress tensor
(pressure and viscous forces), and f a body force. Eqs. (3) and (4) are expressed in an Eulerian frame of reference while Eq. (5)
is expressed in an Arbitrary Lagrangian Eulerian (ALE) coordinate system. Details of its development can be found in [14].
Assuming that the fluid is Newtonian, its constitutive equation is given by
r ¼ s� pI with s ¼ l½$uþ ð$uÞT �
where l is the dynamic viscosity and p is the fluid pressure. The flow equations are closed with the following boundary
conditions,
r � n ¼ �t on CN

u ¼ �u on CD
ð6Þ
where CN denotes a boundary where Neumann conditions are applied in the form of prescribed surface forces (tractions) �t,
and CD corresponds to a Dirichlet boundary on which the velocity, �u, is imposed.

There remains the issue of how to generate and control the grid motion and mesh velocities, i.e. manage the domain
deformation. This can be done in several ways which only affect the ability of the solver to cope with more or less compli-
cated domain deformations and mesh motions[30,2,31–37,13,38,39]. This issue has no effect on the GCL. We have opted to
implement mesh control with the pseudo-solid approach of Sackinger [32] because it allows for a fully coupled continuum
formulation. The pseudo-solid model provides physics-based rules using elasticity equations to describe the deformation of
the time-varying domain. These equations are fully coupled to the Navier–Stokes equations on the deforming domain.

Recall that in ALE formulations the Navier–Stokes equations are expressed in a non-deformed configuration and that a
mapping associates, at each time t, a point in the current deformed domain XðtÞ to a point in the reference domain Xð0Þ.
Given that a pseudo-solid approach is used to define the mapping and that the coupled system of PDE’s will be solved by
a finite element method, it is reasonable to construct the mapping in a piecewise continuous manner with the same finite
element basis functions used to represent the geometry of each element in the mesh. Furthermore, it is customary in
unstructured meshes of triangles or tetrahedra to use piecewise linear basis functions for the geometry so that the determi-
nant of the Jacobian for the element mapping is constant, i.e. assume straight-sided elements.

3. Solution strategy

We have chosen a monolithic solution strategy coupling all degrees of freedom: velocities, pressure, along with pseudo-
solid displacements. In this approach all equations are treated implicitly in the time integration scheme. This methodology is
applicable not only for flows on deforming meshes but also to fully implicit monolithic treatment of unsteady Fluid–Struc-
ture Interactions. Linearisation of the flow and mesh equations must account for all implicit dependencies to ensure qua-
dratic convergence of Newton’s method [40]. These steps are implemented simply and in a straight forward manner
through the use of numerical Jacobians. This approach is very robust and applicable to a broad spectrum of problems. Note
however that the details of the finite element flow solver have no effect on GCL compliance.

The fluid velocity and displacement fields are discretized using 6-noded quadratic elements. Fluid pressure is discretized
by piecewise linear continuous functions. This discretisation proves to be useful in our study because all linear and quadratic
flows are captured exactly (Couette and Poiseuille, for instance) so that the spatial error is zero leaving time discretisation as
the sole contributor to error. In such cases, diagnosis of the temporal order of accuracy becomes easy. The resulting sparse
matrix system is solved using the PARDISO software [41,42].
4. Integral formulations and the geometric conservation law

We focus on two weak formulations of the equations. The first one corresponds to the non-conservative form of the Na-
vier–Stokes equations, Eq. (5), and is obtained by multiplying Eq. (5) by a test function w and integrating over the time vary-
ing domain XðtÞ. This means that the non-conservative formulation reads
Z

XðtÞ
w � q ou

ot
dXþ

Z
XðtÞ

w � fq½ðu� vÞ � r�uþrw : rgdX ¼
Z

CNðtÞ
w � ðr � nÞdC ð7Þ
Note that we consider transformation TðtÞ from Xð0Þ to XðtÞ to be regular at all times, i.e. of class Cð1Þ, univalent and such that
JðtÞTðtÞ–0 on Xð0Þ. JðtÞ is the determinant of the Jacobian of the transformation from Xð0Þ, the reference domain, to XðtÞ, the
domain

Proposition 1. We can reformulate Eq. (7) to obtain the following conservative formulation
d
dt

Z
XðtÞ

w � qudX�
Z

XðtÞ
w � ðr � vÞqudXþ

Z
XðtÞ

w � fq½ðu� vÞ � r�uþrw : rgdX ¼
Z

CNðtÞ
w � ðr � nÞdC ð8Þ
Proof 1. Using the temporal derivative of J expressed in terms of the mesh velocity v as
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oJ
ot
¼ Jðr � vÞ ð9Þ
and the fact that test functions and the fluid density do not depend on time when expressed on Xð0Þ leads to the result. h

Eqs. (7) and (8) are, respectively, the non-conservative and the conservative weak formulations. They are strictly equiv-
alent to the Galerkin formulation when the grid is fixed. They are also equivalent to each other in the continuum. The dif-
ference lies in the structure of the temporal derivative term which has an effect on GCL compliance at levels 1 and 2. For
instance, consider the uniform flow test for GCL compliance, then ru ¼ 0. In the case of Eq. (7) the mesh velocity drops
out and does not affect GCL compliance. It turns out that Eq. (7) always complies with the levels 1 and 2 of the GCL. For more
complex velocity fields, the mesh velocity will not drop out of Eq. (7) so that ALE predictions using the non-conservative
form will depend on the construction of v.

In the case of the conservative form, Eq. (8), the time derivative is applied to the momentum integral and is representative
of the fact that the domain of integration also depends on time. For this formulation, the mesh velocity divergence must be
evaluated in such a way that the GCL compliance is satisfied.
5. Time-stepping schemes considered

We study three time integration schemes to assess their interactions with the weak forms, Eq. (7) or (8) and their effects
on the predictions. We consider the Crank–Nicholson and the 3rd and 5th order Radau IIA schemes. These implicit Runge–
Kutta schemes are 2nd, 3rd and 5th order accurate for velocity and 2nd, 2nd and 3rd order accurate for the pressure, respec-
tively (see [43]).

To better appreciate the effects of the time-stepping scheme, we first illustrate their use on the sample ODE y0 ¼ /ðt; yÞ. A
general RK scheme applied to this equation reads
yðnþciÞ
� ¼ yðnÞ þ Dt

Xs

j¼1

aij/ðtðnþcjÞ; y
ðnþcjÞ
� Þ for i ¼ 1; . . . ; s ð10Þ

yðnþ1Þ ¼ yðnÞ þ Dt
Xs

j¼1

bj/ðtðnþcjÞ; y
ðnþcjÞ
� Þ ð11Þ
where tðnþcjÞ means tðnÞ þ cjDt. This system is summarized compactly in the form of a general Butcher Tableau
Following [43], for the three schemes, we have asi ¼ bi, for i ¼ 1; . . . ; s to ensure L-stability so that the projection step defined
by Eq. (11) can be skipped. Note also that the RK schemes are constructed to have the following property ci ¼

Ps
k¼1aik, for

i ¼ 1; . . . ; s.
The Crank–Nicholson time-stepping scheme is of Lobatto IIIa type and is 2nd order accurate for both velocity and pres-

sure. Its Butcher Tableau is
The first row corresponds to an explicit step so that we can write the 2-step RK scheme in a single line as
yðnþ1Þ ¼ yðnÞ þ Dt
2

/ðtðnÞ; yðnÞÞ þ Dt
2

/ðtðnþ1Þ þ Dt; yðnþ1ÞÞ ð12Þ
For incompressible flows, the 3rd and 5th order Radau IIA schemes deliver the expected 3rd and 5th order time accuracy on
velocity and only 2nd and 3rd order time accuracy for pressure. According to Hairer et al. [43], because the pressure is a La-
grange multiplier for incompressibility, the Navier–Stokes equations for incompressible flows are a system of index 2 Dif-
ferential Algebraic Equations which implies a lower time accuracy for the pressure. The Butcher Tableaus of these two
schemes are as follows
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which translates to
yðnþ1=3Þ ¼ yðnÞ þ 5Dt
12

/ðtðnþ1=3Þ; yðnþ1=3ÞÞ � Dt
12

/ðtðnþ1Þ; yðnþ1ÞÞ ð13Þ

yðnþ1Þ ¼ yðnÞ þ 3Dt
4

/ðtðnþ1=3Þ; yðnþ1=3ÞÞ þ Dt
4

/ðtðnþ1Þ; yðnþ1ÞÞ ð14Þ
and means that the two implicit steps are coupled. Thus, doubling the number of unknown when advancing from tðnÞ to tðnþ1Þ

compared to CN. Finally, the Radau IIA5 can be summarized as
which translates to
yðnþc1Þ ¼ yðnÞ þ
X3

j¼1

a1jDt/ðtðnþcjÞ; yðnþcjÞÞ ð15Þ

yðnþc2Þ ¼ yðnÞ þ
X3

j¼1

a2jDt/ðtðnþcjÞ; yðnþcjÞÞ ð16Þ

yðnþc3Þ ¼ yðnÞ þ
X3

j¼1

a3jDt/ðtðnþcjÞ; yðnþc1ÞÞ ð17Þ
which leads to three coupled implicit steps thus tripling the number of unknowns compared to CN.
6. Evaluating the mesh velocity divergence

The objective of this section is to develop systematic constructions of the mesh velocity divergence so as to achieve GCL
compliance for the conservative weak form equation (8).

From here on we assume that space has been discretized by a suitable finite element method with straight-sided triangles
or tetrahedra which implies that the mesh motion and the mesh velocity are piecewise linear functions of space. The fluid
velocity and pressure are discretized with a suitable finite element scheme. We chose the Taylor–Hood element or P2–P1
element for which velocity is discretized with quadratic polynomials and pressure approximated by linear polynomials. This
element is 2nd order accurate for the velocity in H1 norm and 2nd order accurate for the pressure in L2 norm.

The uniform flow test provides a rule for calculating the divergence of the mesh velocity, ðr � vÞ, to satisfy the GCL for the
conservative formulation equation (8). As this is done at the discrete level, it is referred to as the DGCL. This implies com-
pliance at levels 1 and 2 by both formulations Eqs. (7) and (8), see Section 4. Hence, the uniform flow test cannot discriminate
between the two formulations.

Mavriplis studied two time integrators BDF2 and ESDIRK64 [26]. To satisfy the DGCL for each integrator he requires that
the uniform flow satisfy the discretized equations. He does this for a Finite Volume formulation of compressible flows, i.e.
GCL compliance at levels 1 and 2. In the case of FVM, doing this defines a mesh velocity consistent with the space and time
discretisation schemes.

Enforcing GCL compliance on the FEM conservative formulation (8) provides a rule for evaluating the divergence of the
mesh velocity which will be denoted ðr � vdÞ. However, it provides no rule on how to evaluate vd itself, meaning that it does
not define which mesh velocity vd should be used in the ALE FEM. In this work, the rule for constructing the mesh velocity
depends on whether the Butcher Tableau of the scheme is invertible or not.

6.1. GCL for time-stepping schemes with invertible Butcher tableaus

In this section, we consider time-stepping schemes for which Butcher tableaus are invertible. This embraces all Gauss,
Radau and SDI Runge–Kutta schemes, i.e. IRK3 and 5 (see [43]). We also assume, as explained earlier in Section 2, that
the mapping between Xð0Þ and XðtÞ is given by a piecewise linear representation on the elements of the mesh. The Jacobian
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of this transformation is locally constant on each element of the mesh. Note however that J will be a function of time since
the geometry of the element will change with time.

Proposition 2. Consider a time-stepping scheme with an invertible Butcher tableau A ¼ ½aij�i;j2½1;s�2 and let B ¼ ½bij�i;j2½1;s�2 ¼ A�1 be

its inverse. Let JðtÞ be the determinant of the Jacobian transformation at time t from the reference domain Xð0Þ to the deforming domain
XðtÞ. If we restrict ourselves to straight-sided triangular or tetrahedral elements, the following mesh velocity divergence formulation is
a sufficient condition for compliance of the conservative formulation to levels 1 and 2 of the GCL (no-flow and uniform flow).
Xs ðnþckÞ ðnÞ

ðr � mdÞðnþcjÞ ¼

k¼1

bjk
J � J

DtJðnþcjÞ
; j ¼ 1; . . . ; s ð18Þ
Proof 2. The no-flow test is trivial since all terms in the conservative formulation are zero. Now, consider a uniform flow, the
conservative formulation Eq. (8) over an element reduces to
d
dt

Z
XeðtÞ

w � qudX ¼
Z

XeðtÞ
ðr � vdÞðtÞw � qudX ð19Þ
Discretise this equation using Eq. (10) without the projection step (which is not required for time-stepping schemes with
invertible Butcher tableaus) to obtain
1
Dt

Z
XeðnþciÞ

w � qudX� 1
Dt

Z
XeðnÞ

w � qudX ¼
Xs

j¼1

aij

Z
XeðnþcjÞ

ðr � vdÞðnþcjÞw � qudX; i ¼ 1; . . . ; s ð20Þ
Now consider only the right-hand side (RHS) of Eq. (20). The essence of the proof consists in showing that the RHS of Eq. (20)
is equal to the LHS. Insert the proposed expression of the mesh velocity divergence defined by Eq. (18). We have
RHS ¼
Xs

j¼1

aij

Z
XeðnþcjÞ

Xs

k¼1

bjk
JðnþckÞ � JðnÞ

DtJðnþcjÞ
w � qudX; i ¼ 1; . . . ; s ð21Þ
For a linear representation of the geometry, i.e. straight-sided triangles or tetrahedra, JðtÞ is constant per element, so that
1=JðnþcjÞ is represented exactly by the spatial discretization scheme. In this case, Eq. (21) is numerically equivalent to
RHS ¼
Xs

j¼1

aij

Z
Xeð0Þ

Xs

k¼1

bjk
JðnþckÞ � JðnÞ

Dt
w � qudX; i ¼ 1; . . . ; s ð22Þ
For a constant uniform incompressible flow, qu does not depend on time. We also exploit the fact that on Xð0Þ, the test func-
tions wðxÞ do not depend on time. We can now write
RHS ¼
Xs

j¼1

aij

Xs

k¼1

bjk

Z
Xeð0Þ

JðnþckÞ � JðnÞ

Dt
w � qudX; i ¼ 1; . . . ; s ð23Þ
Since B is the inverse of A, aijbjk ¼ dik; i; k ¼ 1; . . . ; s, with dik the Kronecker symbol which is equal to one if i ¼ k, and zero
otherwise. The right-hand side reduces to
RHS ¼
Z

Xeð0Þ

JðnþciÞ � JðnÞ

Dt
w � qudX; i ¼ 1; . . . ; s ð24Þ
and finally, since we restrict ourselves to a constant Jacobian per element, we get
RHS ¼ 1
Dt

Z
XeðnþciÞ

w � qudX� 1
Dt

Z
XeðnÞ

w � qudX; i ¼ 1; . . . ; s ð25Þ
which completes the proof since we have equality with the left-hand side of Eq. (20). h

Remark: The proof has been performed over one element for simplicity and clarity. Summing over all elements of the mesh
yields the result for the whole domain.

6.2. GCL for time-stepping schemes with non-invertible Butcher tableaus

For some popular time integrators, such as the Crank–Nicholson scheme, ðaijÞ is not invertible. It is possible, however, to
proceed in much the same way as in the previous section. We treat schemes which do not need a projection step. This means
schemes for which the coefficients in Eq. (11) are equal to those of the last line of system (10), last row in the Butcher tab-
leau. We exclude for brevity’s sake Lobatto IIIB scheme, which would require consideration of the projection step in the
discussion.
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Proposition 3. Consider a time-stepping scheme which does not require a projection step and for which the Butcher tableau
A ¼ ½aij�i;j2½s�pþ1;s��½1;s� is not invertible but is of rank p equal to the number of implicit steps, from the s� pþ 1th to the sth step, the
last p rows of A. Let JðtÞ be the determinant of the Jacobian transformation at time t from the reference domain Xð0Þ to the
deforming domain XðtÞ. Then, if we restrict ourselves to straight-sided triangular or tetrahedral elements, there exists at least one
vector ½ðr � vdÞðnþcjÞ�j2½1;s� such that

ðnþckÞ ðnÞ Xs
J � J
Dt

¼
j¼1

akjJ
ðnþcjÞðr � vdÞðnþcjÞ; k ¼ s� pþ 1; . . . ; s ð26Þ
Then this constitutes a sufficient condition for compliance of the conservative formulation to levels 1 and 2 of the GCL (no-

flow and uniform flow tests).

Proof 3. Consider a uniform flow, the conservative formulation equation (8) over an element reduces to
d
dt

Z
XeðtÞ

w � qudX ¼
Z

XeðtÞ
ðr � vdÞðtÞw � qudX ð27Þ
Discretising this equation using Eq. (10), yields
1
Dt

Z
XeðnþciÞ

w � qudX� 1
Dt

Z
XeðnÞ

w � qudX ¼
Xs

j¼1

aij

Z
XeðnþcjÞ

ðr � vdÞðnþcjÞw � qudX; i ¼ s� pþ 1; . . . ; s ð28Þ
which constitutes a system of p equations to be solved. For the class of Runge–Kutta schemes considered here,
A ¼ ½aij�i;j2½s�pþ1;s��½1;s� is of rank p (see [43]). Hence there will be solution vectors ½ðr � vÞðnþcjÞ�j2½1;s� to system (28). h

For example, applying Eq. (26) to the Crank–Nicholson integrator and a uniform flow leads to the following equality
(equivalent to GCL compliance at level 2) which must be satisfied
1
2

Jðnþ1Þðr � vdÞðnþ1Þ þ 1
2

JðnÞðr � vdÞðnÞ ¼
Jðnþ1Þ � JðnÞ

Dt
ð29Þ
As there are two unknowns (ðr � vdÞ at times n and nþ 1) several solution vectors ½ðr � vdÞðnþjÞ�j2½0;1� are possible. We chose
ðr � vdÞðnÞ ¼
Jðnþ1Þ � JðnÞ

DtJðnÞ
ð30Þ

ðr � vdÞðnþ1Þ ¼ Jðnþ1Þ � JðnÞ

DtJðnþ1Þ ð31Þ
Note that other choices are possible, for instance any convex combination of
ð ~r � vdÞðnÞ ¼ 2aðr � vdÞðnÞ ð32Þ
ð ~r � vdÞðnþ1Þ ¼ 2ð1� aÞðr � vdÞðnþ1Þ ð33Þ
a 2 R will also work. This reflects the fact that there is more freedom in the choice of the mesh velocity divergence for time-
stepping schemes with non-invertible Butcher tableaus.

At this point we have a general methodology, which accounts for characteristics of the time-stepping scheme, to con-
struct the divergence of the mesh velocity to satisfy the GCL at level 2 (DGCL) on straight-sided triangles or tetrahedra. How-
ever, satisfying the DGCL does not automatically guarantee GCL compliance at level 3 as mentioned by Geuzaine et al. [25]. In
fact, satisfying the DGCL does not provide any additional information about the convergence rate of the time-stepping pro-
cedure other than stating that the time-integrator will be at least first order accurate on deforming domains. While the tech-
nique for computing ðr � vdÞ is general, it provides no information about the proper way to compute vd itself. This is the
subject of the following section.

7. Mesh velocity calculation

The objective of this section is to define a mesh velocity such that accuracy observed on fixed grids is preserved on mov-
ing grids. Most previous works assume that the mesh velocity is given and is used to evaluate both ðr � vÞ and v in the con-
servative formulation (8). The only way to achieve GCL compliance is to find a time-integrator (or design one) such that it
satisfies the GCL when the given mesh velocity is used for v and ðr � vÞ in Eq. (8).

We take a different approach and assume that the spatial discretisation and the time integrator are given, and we seek
two formulas: one for evaluating the divergence of the mesh velocity ðr � vdÞ to satisfy the GCL, and a second one to compute
the mesh velocity itself vm so as to ensure that the high order temporal accuracy observed on a fixed mesh is maintained on a
deforming mesh. This amounts to using two mesh velocities vd and vm. As shown in Section 6, only ðr � vdÞ is required to
evaluate the term

R
XðtÞ w � ðr � vdÞqudX and provide GCL compliance at level 2 for Eq. (8). The velocity vd itself is not
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required. The second mesh velocity vm appears only in
R

XðtÞ w � q½ðu� vmÞ � r�udX. Hence, ðr � vmÞ need not be GCL compli-
ant. Its role is to ensure that the fixed mesh temporal accuracy of the time integrator is also observed on deforming meshes.

In this approach it is clear that GCL compliance has no effect on the temporal accuracy of the time integrator. In fact, the
freedom resulting from the use of two mesh velocities provides the mechanism to maintain the fixed grid temporal accuracy
when the scheme applied to deforming domains. This approach offers several advantages. The same time integrator is used
for fixed mesh and deforming meshes. This greatly simplifies code structure, software maintenance and modifications, use of
the code, and interpretation of results. We now take a look at possible constructions of vm for the three time-integrators of
the previous sections. Here too the construction of vm is different depending on whether the Crank–Nicholson or IRK3 and
IRK5 schemes are used just as was the case for ðr � vdÞ.

7.1. The Crank–Nicholson scheme

We begin by taking a look at this issue for the Crank–Nicholson scheme for which the usual and accepted way of eval-
uating the mesh velocity is the midpoint rule
ðnþ1Þ ðnÞ

vmðxÞ ¼

x � x
Dt

ð34Þ
This formula is used to compute the mesh velocity vm. However, its use to evaluate the mesh velocity divergence is restricted
to 2D problems as stated by the following proposition. It cannot be used in 3D.

Proposition 4. Consider the conservative formulation equation (8) and piecewise linear mesh deformation in space (linear
deformation of triangles or tetrahedra). Using the divergence of Eq. (34) to evaluate the divergence of the mesh velocity,
ðr � vdÞ ¼ ðr � vmÞ, will result in GCL compliance at levels 1 and 2 for 2D flows only.
Proof 4. We substitute Eq. (34) into the GCL equation (29). We restrict the proof over one element for clarity of the notation.
Let Xe be a two-dimensional elementary domain
1
Dt

Z
Xeðnþ1Þ

w � qudX� 1
Dt

Z
XeðnÞ

w � qudX ¼ 1
2

Z
XeðnÞ

rðnÞ � x
ðnþ1Þ � xðnÞ

Dt

� �
w � qudX

þ 1
2

Z
Xeðnþ1Þ

rðnþ1Þ � x
ðnþ1Þ � xðnÞ

Dt

� �
w � qudX ð35Þ
For this equation,rðnþ1Þ � xðnþ1Þ ¼ 2 andrðnÞ � xðnÞ ¼ 2 in two-dimensions only. Thus to satisfy Eq. (35) the following relation-
ship must holdZ Z
Xeðnþ1Þ
ðrðnþ1Þ � xðnÞÞw � qudX ¼

XeðnÞ
ðrðnÞ � xðnþ1ÞÞw � qudX ð36Þ
Now consider the transformation TðnÞðr; sÞ and Tðnþ1Þðr; sÞ from the reference element Xeð0Þ to the physical element XeðtÞ at
times n and nþ 1.
TðnÞ : ðr; sÞ# ðxðnÞ; yðnÞÞ
Tðnþ1Þ : ðr; sÞ# ðxðnþ1Þ; yðnþ1ÞÞ
and let F be the Jacobian of the transformations from the reference element to the physical element and J its determinant. We
have " # " #
FðnÞ ¼
oxðnÞ
or

oxðnÞ
os

oyðnÞ

or
oyðnÞ

os

; Fðnþ1Þ ¼
oxðnþ1Þ

or
oxðnþ1Þ

os

oyðnþ1Þ

or
oyðnþ1Þ

os
Then Eq. (36) becomes
Z
Xeð0Þ

Jðnþ1Þr � ðFðnþ1Þ�1
FðnÞxÞw � qudX ð37Þ

¼
Z

Xeð0Þ
JðnÞr � ðFðnÞ�1

Fðnþ1ÞxÞw � qudX ð38Þ
Recall that for straight-sided triangular or tetrahedral elements, J and F are piecewise constant, so that
r � ðFðnþ1Þ�1
FðnÞxÞ ¼ tr½Fðnþ1Þ�1

FðnÞ� ð39Þ

r � ðJðnÞ=Jðnþ1ÞFðnÞ
�1

Fðnþ1ÞxÞ ¼ trfCof ½Fðnþ1Þ�1
FðnÞ�g ð40Þ
Satisfying the equality implies that the following expression must be verified
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tr½Fðnþ1Þ�1
FðnÞ� ¼ trfCof½Fðnþ1Þ�1

FðnÞ�g ð41Þ
Setting A ¼ Fðnþ1Þ�1
FðnÞ in Eq. (41) is equivalent to having trðAÞ ¼ tr½CofðAÞ�. This equality holds for matrices of rank 2 only.

This means that taking the divergence of formula (34) will yield a GCL compliant mesh velocity divergence for two-dimen-
sional problems only. In 3Drðnþ1Þ � xðnþ1Þ ¼ rðnÞ � xðnÞ ¼ 3. One could think to multiply the mesh velocity by 2/3. However, Eq.
(41) will generally not be satisfied in 3D. h

Remark: It is preferable to use Eqs. (30) and (31) to evaluate ðr � vdÞ as they guarantee GCL compliance at level 2 in both two
and three dimensions.Remark: Lesoinne and Farhat [4] successfully used formula (34) for 2D flows only. For 3D flows they
replaced the CN scheme by a more costly multipoint time integrator to achieve GCL compliance. In our approach, the dis-
tinction we make between the mesh velocity divergence ðr � vdÞ and the mesh velocity ðvmÞ, results in time discretisations
that are 2D and 3D GCL compliant. This allows us to use the same identical formulation for 2D or 3D flow simulations.

7.2. IRK Radau schemes (invertible Butcher tableaus)

Generalizing Eq. (34) to IRK3 and IRK5 time-stepping schemes yields
Xs ðnþciÞ ðnÞ

vðnþcjÞ

m ðxÞ ¼
i¼1

½aij��1 x � x
Dt

ð42Þ
This formula may be used to compute the mesh velocity vm. However, its use to evaluate the mesh velocity divergence is

restricted to 2D problems and mesh motions that are linear functions of time, a severe restriction, as stated by the following
proposition.

Proposition 5. Consider the conservative formulation equation (8) and piecewise linear deformations in space (straight-sided
triangles or tetrahedra). Using divergence of Eq. (42) to evaluate the divergence of the mesh velocity, ðr � vdÞ ¼ ðr � vmÞ, will make
the conservative formulation satisfy the GCL only if the mesh motion is a linear function of time and only for 2D flows.

Proof 5. The proof is given for the IRK3 scheme. A similar argument applies to the IRK5 scheme. We restrict the proof over
one element for clarity of the notation. Let Xe be a two-dimensional elementary domain. Consider the second step of the IRK3
integrator, Eq. (14). Substituting the conservative formulation Eq. (8) and the divergence of Eq. (42) for evaluating the mesh
velocity divergence for a uniform flow yields
1
Dt

Z
Xeðnþ1Þ

w � qudX� 1
Dt

Z
XeðnÞ

w � qudX ¼ 3
4

Z
Xeðnþ1=3Þ

rðnþ1=3Þ � 3
2

xðnþ1=3Þ � xðnÞ

Dt
þ 1

2
xðnþ1Þ � xðnÞ

Dt

� �� �
w � qudX

þ 1
4

Z
Xeðnþ1Þ

rðnþ1Þ � �9
2

xðnþ1=3Þ � xðnÞ

Dt
þ 5

2
xðnþ1Þ � xðnÞ

Dt

� �� �
w � qudX ð43Þ
Now letting the mesh motion be a linear function of time leads to the following property
xðnþ1=3Þ � xðnÞ ¼ xðnþ1Þ � xðnÞ

3
ð44Þ
Substitution of Eq. (44) into the right-hand side of Eq. (43) leads to
RHS ¼ 3
4

Z
Xeðnþ1=3Þ

rðnþ1=3Þ � xðnþ1Þ � xðnÞ

Dt

� �� �
w � qudXþ 1

4

Z
Xeðnþ1Þ

rðnþ1Þ � xðnþ1Þ � xðnÞ

Dt

� �� �
w � qudX ð45Þ
Transform the first term of the right-hand side above using Eq. (36) which holds for two-dimensional flows only
RHS ¼ 3
4

Z
Xeðnþ1Þ

rðnþ1Þ � xðnþ1=3Þ

Dt

� �� �
w � qudX� 3

4

Z
XeðnÞ

rðnÞ � xðnþ1=3Þ

Dt

� �� �
w � qudX

þ 1
4

Z
Xeðnþ1Þ

rðnþ1Þ � xðnþ1Þ � xðnÞ

Dt

� �� �
w � qudX ð46Þ
Use property Eq. (44) to obtain
RHS ¼ 3
4

Z
Xeðnþ1Þ

rðnþ1Þ � xðnþ1Þ þ 2xðnÞ

3Dt

� �� �
w � qudX� 3

4

Z
XeðnÞ

rðnÞ � xðnþ1Þ þ 2xðnÞ

3Dt

� �� �
w � qudX

þ 1
4

Z
Xeðnþ1Þ

rðnþ1Þ � xðnþ1Þ � xðnÞ

Dt

� �� �
w � qudX ð47Þ
Finally, using Eq. (36) once more leads to
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RHS ¼ 1
2

Z
Xeðnþ1Þ

rðnþ1Þ � xðnþ1Þ

Dt

� �� �
w � qudX� 1

2

Z
XeðnÞ

rðnÞ � xðnÞ

Dt

� �� �
w � qudX ð48Þ
In two dimensions, we haverðnÞ � xðnÞ ¼ rðnþ1Þ � xðnþ1Þ ¼ 2. Thus, Eq. (48) equals the left-hand side of (43). However, the use of
Eq. (36) is restricted to 2D and Eq. (44) to a linear time dependence of the mesh motion so that Eqs. (43) is subjected to both
restrictions. h

Remark: It is preferable to use Eq. (18) to evaluate ðr � vdÞ as it allows for GCL compliance at level 2 in both two and three
dimensions and mesh motions that are arbitrary functions of time.

Remark: For practical cases the mesh motion is arbitrary so that it is not a linear function of time. Hence the mesh veloc-
ity defined by Eq. (42) will not be GCL compliant for multi-step schemes, such as IRK3 and IRK5 schemes. Fig. 1 illustrates
mesh motions that are linear and non-linear functions of time. Taking the divergence of Eq. (42) will not yield the result of
Eq. (18). Thus, Eq. (42) cannot lead to GCL compliance in the general case.

The only remaining question is whether the convergence rate of the time stepping scheme is optimal (GCL at level 3), i.e.
do we have the same convergence rate on moving meshes as on fixed meshes. This will be answered in Section 8 where we
perform numerical tests on the IRK3 and IRK5 time integrators using nonlinear mesh motions.

We briefly summarize our results thus far. The conservative weak form from Eq. (8) will be GCL compliant if

(1) the mesh consists of linearly deforming straight-sided triangles in 2D or tetrahedra in 3D,
(2) the following definitions are used for ðr � vdÞ and vm for IRK3 and IRK5
Xs ðnþciÞ ðnÞ

ðr � vdÞðnþcjÞ ¼

i¼1

½aij��1 J � J

DtJðnþcjÞ
; j ¼ 1; . . . ; s ð49Þ

vðnþcjÞ
m ðxÞ ¼

Xs

i¼1

½aij��1 xðnþciÞ � xðnÞ

Dt
; j ¼ 1 . . . s ð50Þ
or the following definitions for ðr � vdÞ and vm for the Crank–Nicholson scheme
ðnþ1Þ ðnÞ

ðr � vdÞðnþjÞ ¼ J � J

DtJðnþjÞ ; j ¼ 0;1 ð51Þ

vðnþjÞ
m ðxÞ ¼ xðnþ1Þ � xðnÞ

Dt
; j ¼ 0;1 ð52Þ
Furthermore, the time integrators will exhibit optimal temporal accuracy that is the fixed mesh temporal convergence

rate will be observed on deforming meshes.

8. Analytical and numerical results

This section presents results from analytical error analysis and careful numerical tests verifying that our approach yields
optimal temporal accuracy for the CN, IRK3 and IRK5 integrators. This is achieved by considering two separate classes of un-
steady solutions. The first regroups solutions that are represented exactly by the spatial discretisation: the uniform, Couette
and Poiseuille flows. For these flows, there are no interaction or interference between the temporal and spatial discretisation
errors so that accuracy of the time-stepping scheme can be tested without worrying about spatial discretisation artifacts.
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The second kind of unsteady solutions is a manufactured solution of a very general nature that cannot be represented
exactly by the finite element basis functions. We use the Method of Manufactured Solution (MMS) [44] to construct a solu-
tion of sufficient complexity on a deforming domain to ensure that all terms in the ALE formulation are exercised. This ana-
lytical Manufactured Solution makes it possible to perform time step refinement studies to draw definite conclusions about
time accuracy.

8.1. Uniform flow test

The uniform flow test u ¼ 1 is not a very discriminating test for the non-conservative formulation equation (7) as shown
by Formaggia et al. [17]. Since the fluid velocity is constant, its derivatives vanish, so that the mesh velocity termR

w � q½ðu� vmÞ � r�u is identically 0 and has no effects whatsoever on the result. For the conservative formulation, use of
Eq. (49) and (51) (see Section 6) is required to satisfy GCL at level 2, depending on the time-stepping scheme.

For the uniform flow test, Eq. (7) or Eq. (8) result in simple algebraic equations that can be evaluated and analyzed easily.
Our numerical results confirmed that no parasitic flow solution arises with either formulations, and velocities as well as
pressure maintain machine accuracy for all times. In other words, both formulations satisfy the so-called uniform flow test
(GCL compliance at levels 1 and 2). However, it provides no means for testing GCL compliance at level 3 as levels 1 and 2 are
insufficient to discriminate. Doing this requires a slightly more involved flow field as shown in the next sections.

8.2. The linear shear flow

The linear shear flow or Couette flow is usually associated with the flow between two flat plates with one moving in its
plane relative to the other. Driven by viscosity, the flow is a linear function of y (see [29])
u ¼ y ð53Þ
v ¼ 0 ð54Þ
p ¼ constant ð55Þ
Even though the flow is steady one can still analyse the GCL provided the grid points inside the domain move so that the
mesh deforms with time. This test exercises both the GCL and the mesh velocity

R
XðtÞ w � q½ðu� vmÞ � r�u – 0. This problem

is useful because it lends itself to a complete analytical analysis of the time truncation error. Since u is linear in y and p is
constant, the spatial variations of the flow are represented exactly by the FE discretisation. Hence the only contribution to
the error is the temporal discretisation.

This simplified setting is ideal to carry out a detailed time truncation error analysis of the conservative formulation, Eq.
(8), with the Crank–Nicholson time integrator on arbitrary but spatially linear mesh motions. Recall that the popular CN
scheme is also a Runge–Kutta so that its time truncation error is given by [45]
�ðnþciÞðDtÞ ¼ yðnþciÞ � yðnÞ

Dt
�
Xs

j¼1

aij/ðtðnþcjÞ; yðnþcjÞÞ; for i ¼ 1; . . . ; s ð56Þ
Proposition 6. If the conservative formulation equation (8) is used in conjunction with Eqs. (51) and (52), for spatially linear
deformation of triangles or tetrahedra, the Crank–Nicholson scheme will yield the exact solution to the linear shear flow on
deforming grids.

Proof 6. Consider time integration over one time-step from tðnÞ to tðnþ1Þ ¼ tðnÞ þ Dt for linearly deforming triangles (2D) or
tetrahedra (3D)
�
ðnþ1Þ
CN ðDtÞ ¼ 1

Dt

Z
Xeðnþ1Þ

wydX� 1
Dt

Z
XeðnÞ

wy dX� 1
2

Z
Xeðnþ1Þ

wðr � vdÞðnþ1ÞydX

� 1
2

Z
XeðnÞ

wðr � vdÞðnÞydX� 1
2

Z
Xeðnþ1Þ

wv ðnþ1Þ
m dX� 1

2

Z
XeðnÞ

wv ðnÞm dX ð57Þ
Due to the linear representation of the geometry, substitution of expressions for the mesh velocity divergence eqquation (51)
and mesh velocity equation (52) into Eq. (57) yields
�
ðnþ1Þ
CN ðDtÞ ¼

Z
XeðnÞ

w
Jðnþ1Þðyþ vmDtÞ � y

JðnÞDt

( )
dX� 1

2

Z
XeðnÞ

w
Jðnþ1Þ � 1

JðnÞDt
½ðyþ vmDtÞ þ y�

( )
dX

� 1
2

Z
XeðnÞ

w vm
Jðnþ1Þ

JðnÞ
þ 1

 !( )
dX ð58Þ
Note that with our definition of the mesh velocity vm, transforming integral over Xðnþ 1Þ to integral over XðnÞ also trans-
forms naturally y to yþ vmDt which is advantageous from an analytical standpoint. Since, vm is spatially linear, it is easily
shown that �CNðDtÞ ¼ 0 will be satisfied to machine zero. h
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Remark: This behaviour is exceptional, and occurs only with this test case. This performance is superior to that of Leso-
inne and Farhat [4].
Remark: Applying the same procedure to the non-conservative formulation we find that the error isR
XeðnÞ w � vmðJðnþ1Þ � JðnÞÞ=JðnÞ dX so that the time truncation error comes out to be of order one, OðDtÞ. This implies that, at best,

only first order time accuracy can be achieved with the non-conservative formulation equation (7) if formula (52) is used.
Remark: The method developed by Lesoinne and Farhat [4] with respect to the Crank–Nicholson will reproduce the exact

solution with 2nd order time accuracy less than above. This is due to the fact that they compute directly the mesh velocity
divergence from the mesh velocity instead of using Eq. (51). This is an example of proposition 3 which states that more than
one mesh velocity divergence may yield GCL compliance for the Crank–Nicholson scheme. Lesoinne’s results and ours are
two examples yielding GCL compliance at level 3. However, Lesoinne’s yields optimal time accuracy for 2D flows only as seen
previously while the present method is valid for 2D and 3D.

Proposition 7. If the conservative formulation equation (8) is used in conjunction with Eqs. (49) and (50), for linear deformations
of triangles or tetrahedra and if the mesh motion is a linear function of time, IRK3 and IRK5 schemes will yield the exact solution to
the linear shear flow on deforming grids.

Proof 7. We give the proof for the IRK3 scheme. A similar argument applies to the IRK5 integrator. Consider the time trun-
cation error (56) for Radau IIa3 scheme (IRK3). The second substep applied to the linear shear flow reads
�
ðnþ1Þ
IRK3 ðDtÞ ¼ 1

Dt

Z
Xeðnþ1Þ

wydX� 1
Dt

Z
XeðnÞ

wydXþ 3
4

Z
Xeðnþ1=3Þ

w½ðr � vdÞðnþ1=3Þy� v ðnþ1=3Þ
m �dX

þ 1
4

Z
Xeðnþ1Þ

w½ðr � vdÞðnþ1Þy� v ðnþ1Þ
m �dX ð59Þ
The mesh motion is linear in space and time. Using formula (49) in Eq. (59) leads to �ðnþ1Þ
IRK3 ðDtÞ ¼ 0. h

To reinforce the above conclusions, we complete this analytical study with a numerical time step refinement study. The
solution is advanced in time on the time interval [0,4] starting with one time step Dt that we repeatedly divide by 2. Thus
Dtk ¼ 4=2k�1; k 2 ½1;7� ð60Þ
The errors for the velocity and pressure fields are evaluated at time t ¼ 4 using the following error norms
jjeujj2E ¼ jjuex � uhjj2E ¼
Z

X
ðsex � shÞ : ðsex � shÞdX ð61Þ
for the velocity and
jjepjj2L2
¼ jjpex � phjj

2
L2
¼
Z

X
ðpex � phÞ

2dX ð62Þ
for the pressure. Subscript ex refers to the exact solution and h to the finite element solution.
Fig. 2 presents results obtained for the Couette Flow using the following mesh motion:
horizontal nðx; y; tÞ ¼ tð1� x2Þðyþ 1Þ=32 ð63Þ
vertical gðx; y; tÞ ¼ tð1� y2Þðxþ tð1� x2Þ=32þ 1Þ=32 ð64Þ
Fig. 2. Grid convergence study for the Couette flow with mesh moving in the two directions.
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It exhibits a nonlinear (quadratic) dependence in t so that this test will be sensitive to choices made for evaluating ðr � vdÞ
and vm. In particular, ðr � vdÞ–ðr � vmÞ for IRK3 and IRK5 schemes. As we can observe in Fig. 2, the non-conservative CN algo-
rithm presents a suboptimal convergence rate of OðDtÞ as predicted by the analytical study. Note also that the convergence
rates for the other schemes are optimal; that is they are equal to those observed on fixed meshes. These results confirm our
analytical error analysis. The non-conservative formulation exhibits a suboptimal convergence rate of one for all time inte-
grators whereas the conservative formulation exhibits the time integrator’s optimal rate.

Our Crank–Nicholson yields the exact solution because the mesh velocity and the divergence of the mesh velocity are
evaluated with Eqs. (51) and (52). This unusual behavior results from a special property of our approach. For the ODE
y0 ¼ f ðt; yÞ it is written as
Table 2
Converg

Nonline
Crank–
IRK3
IRK5

Linear v
Crank–
IRK3
IRK5
yðnþ1Þ � yðnÞ

Dt
¼ f ðtðnÞ; yðnÞÞ þ f ðtðnþ1Þ; yðnþ1ÞÞ

2
ð65Þ
Because this Crank–Nicholson scheme does not sample the solution at intermediate time steps, it always perceives the mesh
motion as a linear function of time which explains why our CN conservative formulation delivers the exact solution as pre-
dicted by proposition 6.

To verify our statement that multi-step methods yield the exact solution to the Couette flow when the mesh motion
is a linear function of time, we ran the three schemes with the conservative formulation. All integrators reproduced the
exact solution to the Couette flow with velocity and pressure errors of order of machine zero ð� 10�14Þ as predicted by
proposition 7.

Table 2 summarizes results for the Couette flow, the different formulations and time integrators with the proposed com-
bination of mesh velocity and mesh velocity divergence. The non-conservative formulation yields a solution that is first order
accurate, OðDtÞ, for the three time integrators. The conservative formulation yields solutions with optimal time accuracy.
Thus, there appears to be compelling evidence for using the conservative formulation, Eq. (8).

We note, however, that the Couette flow does not thoroughly test the viscous terms in the Navier–Stokes equations as the
second derivatives of velocity and the convective terms vanish for this flow.

Remark: While the above error analyses (prop 6 and 7) hold formally for both 2D and 3D simplices, optimal accuracy
remains to be confirmed by numerical tests in 3D for all test cases presented in the following section, including 3D manu-
factured solution.

The following sections present systematic and thorough numerical tests confirming the theoretical results for two-
dimensional flows.

8.3. The Poiseuille flow

The Poiseuille flow (see [29]) provides a test for some of the viscous terms in the Navier–Stokes equations. The velocity
component u is a quadratic polynomial in y only, v is zero, and p is linear in x only. The solution is again steady state and
ence rate for various time-stepping schemes for the Couette flow and linear/nonlinear time mesh motions.

Conservative formulation (8) Non-conservative formulation (7)

L2-pressure H1-energy L2-pressure H1-energy

ar vm

Nicholson Exact Exact 1 1
2 3 1 1
3 5 1 1

m

Nicholson Exact Exact 1 1
Exact Exact 1 1
Exact Exact 1 1

Fig. 3. Geometry and boundary conditions for the Poiseuille flow.



independent of t as for the Couette and uniform flows. The problem is made unsteady by using a time varying mesh. We use
the same mesh motion as for the Couette flow equations (63) and (64).

The time integration is performed on the time interval [0,1] with the following sequence of time steps
Dtk ¼ 1=2k�1; k 2 ½1;7� ð66Þ
Geometry and boundary conditions are depicted in Fig. 3. Again only vertices inside the domain are allowed to move.
Fig. 4 and Table 3
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Remark: We performed an analytical study similar to that done for the linear shear flow and the CN scheme. For the con-
servative formulation and Eqs. (52) and (51), it shows that the time truncation error term is
Z

XðnÞ
wð�v2

m=2ÞDtðJðnþ1Þ � JðnÞÞ=JðnÞ dX
which is of order of OðDt2Þ and confirms the numerical results. Moreover, this analysis shows that the results are indepen-
dent of space dimension for linear deforming triangles or tetrahedra.

We note that the Poiseuille flow is not a truly conclusive test for an ALE formulation because the solution is one-dimen-
sional, the convective terms are zero, and the solution is represented exactly by the finite element space discretisation. A test
case with a more complex flow pattern given by the Method of Manufactured Solutions is required.

8.4. Manufactured Solution

The Method of Manufactured Solutions provides a more exhaustive and general test of the two formulations. In fact the
Method of Manufactured Solutions [44] provides for a complete verification of the time-integrators-GCL formulations. Man-
ufactured solutions are constructed in such a way that they exercise all derivatives in the flow equations. The manufactured
velocity and pressure solutions are set to
uðx; y; tÞ ¼ ð�1þ xþ x2 þ yþ y2 þ xyþ y3ÞgðtÞ
vðx; y; tÞ ¼ ð1þ xþ x2 � y� y2=2� 2xyþ x3ÞgðtÞ
pðx; y; tÞ ¼ x2

gðtÞ ¼ 1þ tanhðtÞ sinð9ptÞ
nðx; y; tÞ ¼ xyt2=5

gðx; y; tÞ ¼ xyð1� t2=5Þ=10
This solution is not represented exactly by the spatial discretisation of the P2–P1 Taylor–Hood element used here so that the
spatial discretisation contributes to the overall error. The FE approximation is second order accurate for velocity in H1 norm
(3rd order in L2 norm ) and second order accurate for the pressure in L2 norm.

Initial tests with the manufactured solution were disappointing. Because with IRK3 and IRK5 schemes, the time trunca-
tion error decreases extremely fast with Dt so that after 1–3 steps of refinement the spatial discretisation error dominates
the total error. Hence the convergence curves will reach plateaus. Reducing the level of this plateau requires such fine
meshes that the computations are impractical to perform. The iterated Richardson extrapolation method provides a very
effective alternative to the usual approach described by Roache [44] (see Appendix A). It provides a reference solution which
corresponds to the exact solution to the system of ordinary differential equations in time resulting from the Finite Element
discretisation of space.

The initial conditions are given by evaluating the manufactured solution at t ¼ 0. Simulations are performed over the time
interval [0,0.5] with
Dtk ¼ 1=2k; k 2 ½1;12� ð67Þ
Fig. 6. Grid convergence for the manufactured solution, H1 energy norm.



Fig. 7. Grid convergence for the manufactured solution, L2 pressure norm.

Table 4
Convergence rate for various time-stepping schemes for the Manufactured flow and arbitrary mesh motions.

MMS Conservative formulation (8) Non-conservative formulation (7)

L2-pressure H1-energy L2-pressure H1-energy

Crank–Nicholson 2 2 1 1
IRK3 2 3 1 1
IRK5 3 5 1 1
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Figs. 6 and 7 show temporal convergence rates for the manufactured solution in terms of H1 norm of the velocity and L2 norm
of pressure. Convergence rate of the non-conservative formulation deteriorates to first order for both velocity and pressure
as the time step is reduced. The conservative formulation delivers optimal rates of convergence for velocity and pressure as
the time step is reduced (see Table 4).

9. Discussion

Tables 5–7 summarize results from all tests for the Crank–Nicholson, IRK3 and IRK5 time integrators.
The general conclusion is that the conservative formulation with formulas (49) and (50) for IRK3 and IRK5 time-stepping

schemes and (51) and (52) for the Crank–Nicholson scheme yield the fixed mesh temporal accuracy on deforming meshes,
thus satisfying the GCL at level 3. The non-conservative formulation with formulas (50) for IRK3 and IRK5 time-stepping
schemes and (52) will yield only first order time accuracy on deforming meshes whereas optimal rates of convergence
are observed on fixed grids. Other methodologies may improve the temporal convergence rate with the non-conservative
formulation. This most often proves to be very expensive as many more evaluations of the residuals are required within a
time-step than those prescribed by the time integrator. This has been done up to 2nd order time accuracy (see [3,4]). How-
ever the literature does not report such results for time integrators with temporal accuracy greater than 2.

The Taylor–Hood element used in the simulations has quadratic velocity interpolation and linear pressure approximation.
Hence, it reproduces exactly the uniform, the Couette and Poiseuille flows on fixed meshes. This eliminates the space
Table 5
Convergence rate for various flows using non-conservative and conservative formulations with the Crank–Nicholson scheme.

Test flow Conservative formulation Non-conservative formulation

L2-pressure H1-energy L2-pressure H1-energy

Uniform Exact Exact Exact Exact
Couette (1D motion) Exact Exact 1 1
Couette (2D motion) 2 2 1 1
Poiseuille (2D motion) 2 2 1 1
MMS 2 2 1 1



Table 6
Convergence rate for various flows using non-conservative and conservative formulations with IRK3 integrator.

Test flow Conservative formulation Non-conservative formulation

L2-pressure H1-energy L2-pressure H1-energy

Uniform Exact Exact Exact Exact
Couette (1D motion) 2 3 1 1
Couette (2D motion) 2 3 1 1
Poiseuille (2D motion) 2 3 1 1
MMS 2 3 1 1

Table 7
Convergence rate for various flows using non-conservative and conservative formulations with the IRK5 integrator.

Test flow Conservative formulation Non-conservative formulation

L2-pressure H1-energy L2-pressure H1-energy

Uniform Exact Exact Exact Exact
Couette (1D motion) 3 5 1 1
Poiseuille (2D motion) 3 5 1 1
MMS 3 5 1 1
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discretisation errors so that the solution accuracy is only affected by GCL compliance and time accuracy and allows an ana-
lytical time truncation analysis. Thorough numerical tests were reported along with analytical studies of the Crank–Nichol-
son and IRK3 schemes explaining the observed behaviour.

Remark: Our work shows that one way to achieve GCL compliance and optimal time accuracy for a given time integrator
is to evaluate the divergence of the mesh velocity, and the mesh velocity separately as if there were two mesh velocities: vd

to evaluate ðr � vdÞ and vm.
From our study of the three time integrators used in this paper, we conclude that the proposed methodology to construct

mesh velocity divergence and mesh velocities should be applicable to a significant portion (if not the majority) of time inte-
grators in a straight forward manner independently of space dimension.

10. Conclusions

This paper presented a new approach for constructing GCL compliant time accurate ALE finite element methods for vis-
cous incompressible flows. The approach consists in decoupling the construction of the mesh velocity divergence ðr � vdÞ
from the construction of the mesh velocity itself vm. This provides the flexibility to achieve GCL compliance and to maintain
the temporal accuracy of the fixed mesh time-integrator when applied to flows on deforming domains. The approach is
applicable to a broad spectrum of time integrators ranging from the commonly used first order implicit backward Euler
scheme through the very popular second order Crank–Nicholson scheme to more sophisticated 3rd and 5th order Implicit
Runge–Kutta schemes.

Analytical solutions and numerical grid and time step refinement studies were used to determine under what conditions
the conservative and non-conservative weak forms of the Navier–Stokes equations satisfy the GCL and maintain (or not) the
fixed mesh high order temporal accuracy of the time integrator when applied to flows on deforming domains.

We show that the GCL compliant non-conservative formulation is of order one in time. The examples studied, though,
indicate that their temporal accuracy is closest to first order.

For the conservative formulation, construction of the mesh velocity divergence determines GCL compliance while the
method for evaluating the mesh velocity is responsible for maintaining the high order temporal accuracy of the fixed mesh
time integrator when used on deforming meshes (GCL, level 3).

Formal proofs are given that the formulas for the mesh velocity divergence guarantees GCL and DGCL compliance on
deforming meshes of linear straight-sided triangular or tetrahedral elements. Proof is also given that the mesh velocity itself
guarantees that the fixed mesh temporal accuracy is retained on meshes of deforming straight-sided triangles and
tetrahedra.

The formulas developed in this work are straight forward to implement, result in simpler codes that are easier to modify
and maintain because the same time-integrator can be used for two- or three-dimensional flows and for fixed and deforming
domains.

Optimal temporal accuracy on deforming domains was demonstrated analytically on simple flows and confirmed by thor-
ough time-step and mesh refinement studies.

A manufactured solution exercising all terms of the Navier–Stokes equations, provided quantitative data confirming the
validity and properties of the proposed methodology for more complex flows.
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Some aspects of the GCL remain to be investigated. While a successful approach was presented for deriving an appropri-
ate mesh velocity divergence, the issue of reconstructing a mesh velocity field vm from a GCL compliant field of ðr � vdÞ re-
mains an open question.

The question of stability of schemes has not been addressed for the formulations presented here. Previous studies indicate
that the GCL may not be related to stability but that it may enhance and/or suppress oscillations. The present approach might
lead to good stability properties. In fact it might inherit some of the stability properties of the fixed mesh integrator since it
uses the same integrator on fixed and deforming meshes. However, this remains to be confirmed.

Finally, even if our analytical error analysis holds in 3D, optimal accuracy remains to be confirmed by numerical tests on a
3D manufactured solution.
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Appendix A. Iterated Richardson extrapolation

Consider an unsteady flow simulation of accuracy Oðhp
; dnÞ with p the spatial accuracy and n the temporal order of accu-

racy. We call this the baseline solution. Consider now the baseline solution uðh; dÞ and a sequence of approximate solutions
generated by successively halving the time step d and a solution for which the time-step is reduced to zero uðh;0Þ. Given
approximate solutions uðh; d=2iÞ, i 2 ½0;N � 1�, with temporal accuracy of order n to an exact solution uexa. We have
uðh;0Þ ¼ uðh; d=2iÞ þ cnðhÞ
d

2i

� �n

þ cnþ1ðhÞ
d

2i
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þ cnþ2ðhÞ
d

2i
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" #

; i 2 ½0;N � 1� ðA:1Þ
We use Richardson extrapolation to eliminate error terms at order n between the two successive approximations uðh; d=2iÞ
and uðh; d=2iþ1Þ to obtain more precise approximate solutions.
uðh;0Þ ¼ 2nuðh; d=2iÞ � uðh; d=2iþ1Þ
2n � 1

� cnþ1ðhÞ
2ð2n � 1Þ
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2i
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� 3cnþ2ðhÞ
4ð2n � 1Þ

d
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� �nþ2

þ O
d

2i

� �nþ3
" #

; i 2 ½0;N � 2� ðA:2Þ
We define the first Richardson extrapolated approximations to uðh;0Þ as u1
u1ðh; d=2iÞ ¼ 2nuðh; d=2iÞ � uðh; d=2iþ1Þ
2n � 1

; i 2 ½0;N � 2� ðA:3Þ
We repeat the Richardson extrapolation on u1 to obtain the 2nd Richardson extrapolated approximation u2 to uðh;0Þ until we
are left with uN�1, the so-called iterated Richardson extrapolation:
uðh;0Þ � uN�1ðh; dÞ ¼
QN�1

i¼1 ð2
i � 1ÞcnþN�1ðhÞQN�1

i¼1 2i QN�1

i¼1
ð2nþi�1 � 1Þ

dnþN�1 þ O
dnþN

2ðN�1ÞðnþN=2�1Þ

" #

uðh;0Þ � uN�1ðh; dÞ ’ 0:3cnþN�1ðhÞ
d

2N�1

� �n d

2ðN�2Þ=2

� �N�1

ðA:4Þ
which has a much better order of accuracy than that of the leading error term of the initial approximate solution for the
smallest time-step
uðh;0Þ � uðh; d=2N�1Þ ¼ cnðhÞ
d

2N�1

� �n

þ O½ðd=2NÞnþ1� ðA:5Þ
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